
NASA-CR-201411

KATE: From the Lab to the Firing Room

/ ,

Charles Pepe
Steve Beltz

Robert Merchant
Steve Nunez

Charles Goodrich

I-NET, Inc., M/S IN1-16, Kennedy Space Center, FL 32899

Abstract

For the past 9 years, the AI group at NASA's Kennedy Space
Center (KSC) has been developing a real-time model-based
reasoning (MBR) system that can diagnose faults and provide
control advisories. The system resulting from this effort is
called KATE (Knowledge-based Autonomous Test Engineer).
This article describes the transition of KATE from the applied
research lab to the firing room (the firing room is the main
control and monitoring center for all Shuttle ground support and
launch processing). Because the problems that were
encountered along the way are not unique, we decided to share
some of our experiences. This article also includes a brief
overview of the latest application of KATE.

INTRODUCTION

During the ground processing and launch countdowns of the

Space Shuttle at the Kennedy Space Center, NASA relies on
one of the world's largest automated process control systems
known as the Launch Processing System (LPS). This system
works well under normal operating conditions, but is often
inadequate when anomalies occur. Like conventional control
software, LPS is only able to detect and correct anomalies that
the program authors anticipated and is programmed to "hold"
the countdown if unanticipated sensor readings are
encountered.

Since 1983, NASA has been developing and testing various AI
techniques intended to improve existing ground launch

monitoring capabilities. Recent efforts involved testing the
KATE model-based reasoning system against various test
fixtures, improving its capabilities, and finally working to deliver
KATE to a customer. Successful deployment required us to
maintain existing KATE functionality while porting that
functionality to a customer-acceptable hardware/software
platform. This paper gives a brief history of the KATE project
and describes the changes that were necessary to make KATE
a viable production system.

KATE in LISP

NASA's first success in applying MBR technology came in 1985
with the development of LES (Liquid Oxygen Expert System).
LES modeled a part of the Shuttle Liquid Oxygen (LOX)
Tanking system, concentrating on discrete measurements and
system generalities. Though the representation of the domain
was simple, LES did prove successful enough to warrant a
follow-on project. The new system, KATE, extended the LES
algorithms and included control capabilities. This early version
of KATE was tested with a scale model of the Environmental

Control System (ECS) of the Orbiter Modification and
Refurbishment Facility. KATE successfully demonstrated its
ability to diagnose and control using the ECS equipment.

In late 1988, a major rewrite of KATE was undertaken to
incorporate a new knowledge representation and expand its
diagnosing and control capabilities. This version of KATE took
12 months to complete and was developed in LISP on a

Symbolics LISP Machine. There were approximately 70k lines
of code that included a new knowledge base (KB)
representation (the structure and function of components were
separated), new algorithms for diagnosing and control, and a
new graphical user interface (GUI). The new GUI featured
plotting, a semi-automatic drawing system (for advanced
electrical schematics with live data), animated icons (e.g.,
storage tanks filling up, valves opening and closing), and a user
interface building tool.

KATE LISP Applications

In the fall of 1989, two applications were chosen to be built
using this new version of KATE. The first was a joint effort
between NASA and the USAF for the Advanced Launch

Operations (ALO) o1the Advanced Launch System. To prove
the viability of KATE for a new launch system, they directed us
to demonstrate KATE with actual hardware. We chose to build

a model that closely resembled a space vehicle tanking system,
using water instead of a cryogenic liquid. The goal was to build
a KATE application to perform autonomous monitoring,
diagnosis and control of the hardware. Twelve months later
KATE was successfully demonstrated using a KB that
contained about 250 objects. The KATE ALO demo has been

presented over 30 times and continues to be a valuable system
for proving the feasibility of advanced software in the launch
environment.



ThesecondtestscheduledforthisnewKATEsystemwas
anotherdemonstrationoftheShuttleLOXtanking system.

Since the LES system had successfully monitored a part of the
LOX system, the hope was that this new KATE could be used
to monitor the entire system. Though only a prototype, the
KATE LOX application was designed to diagnose actual
component failures as they happened and recommend
corrective actions. Control of the hardware was not required
(though KATE did keep track of what phase the system was in
and the time remaining in that phase). After six months of
development, KATE LOX began to monitor actual LOX
tankings; after another six months of KB development, the LOX
KB grew to include 2500 objects. The system successfully
diagnosed several actual component failures (including a
tachometer and a flow meter) before the LPS detected any
anomaly and before the console operator determined what
failed. The KATE LOX system continues to monitor Shuttle
LOX tankings.

Unfortunately, there was a flaw in our development process.

We produced a large amount of code and several complicated
KB's in a relatively short period, but the systems were

developed with no structured methodology. The resulting
program had no clear system design, no modularity, too much
interdependence of data structures, and inadequate
documentation. The KATE LISP system was powerful and
capable of effective demonstrations, but often required a KATE
expert for proper operation.

The success of KATE LISP was encouraging; however, since it
was not a deliverable product, the KATE development team
was presented with a new problem: how to transform a very
powerful demonstration system into a useable delivery system.

Translate or Reimplement

We realized at this point that the KATE system needed to be
reengineered before it would be accepted as anything more

than a prototype. Since LISP was unacceptable as a delivery
language to our user community, there were numerous
discussions about whether it was feasible to translate the LISP

code. We considered using a tool that attempts to translate
LISP to C automatically. There were two major problems with
this approach. First, the KATE code was not well designed
from a system level. A translation without a redesign would not
fix the problems. Second, if a translation tool were used the
code generated would be unmaintainable. The system would
have to be maintained in LISP and delivered in translated C.

Because of these reasons we decided to reengineer the system
rather than translate it. We also decided to rename the system
KATE-C.

SOFTWARE ENGINEERING APPROACH

Before the AI group could turn KATE into production quality
software for the firing room, it was essential for the team to
adept a structured software engineering paradigm instead of

the rapid prototype style that was used in KATE LISP. To help
us, we used a development methodology that included the
following guidelines:

1. Develop formal requirements
2. Build a design to meet the requirements
3. Implement the design

4. Test code against requirements
5. Use technical reviews

6. Use programming guidelines
7. Use documentation standards

8. Exploit object oriented technology (code reuse,
polymorphism, encapsulation, etc.)

It should be noted that requirements, design and
implementation were not always performed in order. As each
module neared completion, there was a natural tightening of the
requirements, design and code.

KATE in C++

The first big hurdle was deciding on the platform, operating
system, and language. Getting KATE into the hands of users
required understanding their working environment, what
hardware they were familiar with, and what type of system
would be cost effective for them. We also needed to address
the technical issue of what OS/language would be powerful

enough to handle the KATE reasoning mechanism. After some
thought it was decided the best delivery platform would be a
UNIX workstation using C++ as the development language and
X Windows and Motif for the user interface (UI). The user
community was beginning to use UNIX workstations and
though C was more prevalent than C++, we felt that KATE
required the object oriented design (OOD) paradigm if it was
going to be successful. And though the group had little X/Motif
experience, it was clearly becoming the industry standard for
user interfaces on UNIX platforms.

SYSTEM DESIGN

We took a two-part approach to system design. We decided to
functionally decompose the system into high level modules and

then apply an object oriented design to those modules. The
one design constraint that we imposed was to stay consistent
with the architecture of CCMS-2 (the new hardware/software
design of the Firing Room). This constraint required a
client/server design so KATE-C could operate in a distributed
application processor/display processor environment.

The functional decomposition resulted in three top-level
modules: the User Interface, the Reasoning Module and the
Data Module. Each module would run in its own process and
the processes would communicate using an interprocess
communication system.

As we began the process of reengineering KATE, we
developed a few high-level goals that would help the system be
accepted by our user community:

1. Deemphasize autonomy
2. Emphasize advisory
3. Involve the user in KATE-C's reasoning process
4. Make the software as fault tolerant as possible

Below are some design decisions and techniques that proved
useful in the reengineering effort.

User Interface Module

The KATE-C GUI was designed with only a few assumptions

about the user's applications. The goal was to design an



Application Program Interface (API) that the customer could use
to implement their own, application-specific, user interface.

The GUI provides a basic framework upon which the customer
can build. This framework provides all of the services
necessary to interact with the other KATE-C modules such as
the X Window event loop and message handling. The
programmer need only know the X/Motif system to develop a
custom GUI. Also, assodated with each module or submodule

was a text UI. The text user interfaces were tremendously
helpful; developers could test their code and new messages
without running the GUI.

Reasoning Module

As we started to design the reasoning mechanisms for
KATE-C, our main goal was to produce a system that was
functionally equivalent to the LISP system. By applying object-
oriented analysis and design techniques, the resultant module
turned out to be as powerful as the LISP system and the
design was clear, maintainable, and extendable.

The design is centered around a Reasoner object. The
Reasoner object is the main controlling agent for the four
top-level objects: monitoring, simulation, fault detection, and
diagnosis. In addition, each component in the knowledge base
has as an inherited set of member functions and data members
that determines how that particular object shall function with

respect to the four reasoning tasks.

There were four key changes that occurred during the re-
engineering effort:

First, we decided to separate the major reasoning functions into
stand alone submodules. This straight-forward idea greatly
improved the design by allowing for better encapsulation and
easier testing.

Second, we elevated the task of determining if a sensor is
discrepant to an independent reasoning task and called it Fault
Detection. The object-oriented design of fault detection greatly
increased the system's ability to reliably determine if
discrepancies exist. Previous KATE implementations treated all
measurements the same. One function was applied to all
measurements to determine if they were discrepant. The OOD
of the new Fault Detector gives individual measurements the
responsibility to determine if they are discrepant. Noisy
sensors now can be evaluated differently than highly accurate
sensors.

Third, we implemented a Diagnoser Tool Box. The diagnoser
tool box helped turn a very complicated LISP algorithm into
several smaller and simpler diagnostic tools. In addition, the
tool box approach provides a mechanism for adding general
tools (i.e., diagnosing over time tool) and domain specil_c tools
(i.e., a loss of cooling tool for a Freon cooling system).

The fourth change that significantly improved the KATE-C
system resulted from two high-level goals that we had for the
system: deemphasizing autonomy and emphasizing advisory.
The KATE-C system was designed to bnng the user into the
reasoning loop by providing advisory reports on what may have
failed in the system and providing tools to help the user confirm
or discard the reports. With this approach the system is less
threatening to the users and the users are more accepting of

the system if it incorrectly reports an anomaly.

Data Module

The Data Module is the other top-level module in KATE-C. The
Data Module's main purpose is to provide data to the

Reasoning Module. Though conceptually simple, this module
also greatly benefited from the OOD paradigm. New data
providers can be added as plug-in components with little or no
change to the supporting code.

Knowledge Representation

A KATE-C knowledge base is a collection of objects that can

be used by KATE-C's reasoning algorithms to simulate both the
behavior of individual components in the hardware and the
overall system behavior. A knowledge base is built by
selecting the appropriate objects from a library and specifying
how those components are connected. Each object in the
library has as part of its description a set of inputs and one
transfer function. The inputs enable objects to be connected
and the transfer function lakes the input values and generates
an output value. Each library object is implemented as a C++
class which evolved directly from the KATE LISP frame
representation.

Every object in a KB is either a component, pseudo object, or a
function designator (FD). Component objects represent actual

system components that are subject to faults such as valves,
pumps, circuit breakers, etc. FD's are the actual commands
and measurements that are used to control and monitor the

equipment. All objects in a KB that are not either components
or FD's are called pseudo objects. Pseudo objects can
represent physical quantities such as flow rates and

temperatures and they also can be used to connect
components that are functionally related but are not structurally
connected.

The transition from LISP frames to C++ classes was straight
forward and the resulting C++ representation was more
concise. We were able to represent the same information in
less code.

THE VEHICLE HEALTH MANAGEMENT SYSTEM

While KATE-C was being developed it was chosen to be the
basis for a system to be developed by the LPS Application
Software group of Lockheed Space Operations Company at
KSC celled the Vehicle Health Management System (VHMS).

The VHMS project involves using the KATE-C model-based
reasoning technology to build a system that will reduce the cost
of processing the Shuttle.

During normal ground processing the Shuttle is powered up
and system engineers are required to monitor their respective
vehicle subsystems from consoles in the firing room. In
addition, teams of engineers monitor those same subsystems
at the Orbiter Integration Console.

The objective of the VHMS project is to provide an intelligent
monitoring/diagnosis system for the Orbiter Integration Console.
The subsystems to be monitored by VHMS include the
Environmental Control and Life Support Systems (ECLSS),
Electrical Power Distribution and Control (EPDC), and the



Instrumentation (ISL). Currently, each system requires at least
one engineer to be on console when the Shuttle is powered up,
even when no tests are being conducted with that subsystem.

If VHMS is successful, its use at the Integration Console will
free the system engineers from "baby-sitting" the Shuttle and
allow them to do more productive work. This change would
result in significant cost savings per orbiter processing flow.

As a KATE-C application, the VHMS system will include a
customized user interface built within the KATE-C GUI

framework, an application knowledge base, and the KATE-C
Reasoning and Data Modules.

VHMS Domain

The initial Shuttle system chosen for development in VHMS
was the Freon Coolant Loop (FCL) subsystem of the Active
Thermal Control System (ATCS). The ATCS is a subsystem of
ECLSS. The FCL subsystem consists of two nearly identical
loops located in the orbiter, each of which flows Freon-21. The
Freon is circulated by one of two redundant pumps. The heat
from active equipment is absorbed by the Freon and then
transferred to the ground support equipment (GSE) heat

exchanger. The heat exchanger acts as a heat sink for the
ATCS when the Shuttle is powered up on the ground. Since
critical onboard computer equipment and instrumentation can
be damaged by overheating, the FCL temperatures and flow
rates must be monitored very closely for loss-of-cooling
conditions.

VHMS Knowledge Base

The purpose of the initial VHMS KB is to model the dynamic
temperatures, pressures, flow rates, and component states of
the ATCS so that VHMS can detect and diagnose component
faults when they occur. Eventually the KB will be expanded to
include the Shuttle's Atmospheric Revitalization System (ARS)
and EPDC subsystems as well.

The FCL KB took approximately 6-8 months to develop. Heat
transfer is a difficult process to model quantitatively due to the
fidelity that is required to detect and diagnose faults. To model
the Freon loops properly, a substantial part of the electrical
power distribution and ground systems also had to be modeled.

There are approximately 50 different classes of objects in the
KB, and about 400 instance objects. About 60 percent of the
object classes represent actual components, while the
remaining 40 percent represent pseudo objects (i.e., system
parameters such as temperatures and flow rates). In contrast
to the class percentages, about 75 percent of the instance
objects represent components, and 25 percent represent
pseudo objects. The reason for this difference is that the
number of class instantiations is not the same for components

and pseudo objects. A typical component class will have
several instances of itself in the system, whereas most pseudo
objects are unique.

The knowledge base was developed jointly by I-NET and
Lockheed personnel. I-NET computer scientists supplied the

KATE-C (and model building) expertise, while Lockheed
programmers and Shuttle engineers contributed the domain
expert knowledge. Lockheed also designed a set of

customized application windows that function as subsystem

display panels, providing the console (monitoring) engineer with
a quick status at a glance of several ECL subsystems.

VHMS Goals

A big concern of the engineers at the Integration Console is
failure of a main DC power bus in the orbiter's EPDC system.
A main bus drop can cause the Integration Console to become
swamped with fault conditions. In certain circumstances, a
loss-of-cooling condition could ocour, placing critical reaction
time limits (usually 2 to 5 minutes) on the console engineers.
The console engineers must reconfigure the system so that
Freon cooling can resume. If the hardware cannot be
reconfigured within the specified time limits, the orbiter must be
powered down, a costly and dangerous procedure. VHMS's
role is to notify the console operator when a bus failure has
occurred, identify which bus, and if there is a potential for a
loss-of-cooling condition, determine what actions should be
taken and the time constraints.

Another goal for VHMS is to distinguish sensor failures from
component faults. There is not a lot of redundancy in the FCL
system, and often it is difficult (or time consuming) to determine
if an anomaly is a sensor problem or a component problem. It
is hoped that the console engineer could verify sensor failures
quickly with the VHMS system.

SUMMARY

After many years of building KATE prototypes and proof-of-
concept demonstrations, the KATE-C system is now ready for
deployment. The reengineering effort resulted not only in
producing a well designed and maintainable KATE-C system,
but also taught the development team the value of a good
development plan, the need for a structured development
process, and the power of the object-oriented design paradigm.
The VHMS system is tentatively scheduled for deployment in
the tiring room in 1996.

Acknowledgements

A lot of people contributed to the KATE-C and VHMS
development effort. We would like to thank: Mark Schnitzius,
Scott Budzowski, RJ Edwards, Greg Hadaller, Richard Owens,
Chds Walker, Dave Chenault, Barbara Brown, Peter Engmnd,
Dave Clark, Rich Ikerd, and Barbara Kerschner.

References

Davis, R. 1984. "Diagnostic Reasoning Based on Structure
and Behavior." Artificial Intelligence 24, (Dec.): 347-410

Jamleson, J., E. Scad, and C. I. Delaune 1985. "A Knowlege
Based Expert System for Propellant System Monitoring at the
Kennedy Space Center." In Proceeding of the 22nd Space
Congress (Cocoa Beach, FL. Apr.) 1-9

Pepe, C., et al 1992. "KATE - System Overview and Project
Description", NASA Report

Scad, E., J. Jamieson, E. New, 1988. "Model-Based

Reasoning for Diagnosis and Control', FLAIRS


